Mechanism beyond Markov models: How and why to use non-Markovian analysis of trajectory data

Ernesto Suárez 2017

University of Pittsburgh Department of Computational & Systems Biology

MSM in Science

Number of scientific publications per year

2016: 20,7002015: 20,500

2000: 4,600

MSM in Computational Chemistry

[⊥]Freie Universität Berlin, Institute of Mathematics, Arnimallee 6, 14195 Berlin, Germany

Markov State Models (MSM)

Widely used to analyze and interpret molecular trajectories. The final goal is to infer long time behavior.

Main assumption: The Markov property

$$k_{ij}(\tau) = P\{X_{t+\tau} = j | X_t = i\}$$

Regular simulations are Markovian in their full continuous phase spaces. However any discrete partition of the phase space generates non-Markovian trajectories.

Learning process in MSM

 $\mathbf{K}^T \mathbf{p} = \mathbf{p}$

Biased for kinetics

Voelz et al., J. Am. Chem. Soc., 2010, 132(5), pp 1526-1528

Protein Models

Chignolin 106µs

Shaw et al., Science 2011, 334(6055), pp. 517-520

MSM Analysis: Standard Recipe

- 1. Divide the space in "Markovian" regions
- 2. Estimate parameters and select a lag time
- 3. Analysis

Estimating kinetic properties Mean First Passage Time (MFPT)

Mean First Passage Time (MFPT)

 τ = The lag-time >> integration time step δt

$$\text{MFPT} = \frac{1}{k_{AB}}$$

NOT MSM

Mean First Passage Time (MFPT)

Our estimation of the kinetic properties are lag-time dependent while the thermodynamic properties are the same for every lag-time.

MFPT vs lag-time

No MSM or any other model assumption

MFPT vs lag-time

No MSM or any other model assumption

Data choices

Long MD Simulations

Chignolin 106µs

NILYI

Full data set

- Markovian
- Non-Markovian

Reduced data set (< 5%)

• Non-Markovian

Markov State Models

Markov MFPT vs lag-time Chignolin Chignolin (Unfolding) Chignolin (Folding) 10 0.7 **Direct** MFPT = $\frac{1}{N} \sum_{i=1}^{N} FPT_{i}$ 0.6 8 MSM MFPT(µs) 0.5 6 0.4 Direct **True Value** 0.3 4 0.2 MSM 2 0.1 **True Value** 0.0 0 20 40 60 80 100 0 20 80 100 0 40 60 $\tau = \text{Lag Time (ns)}$ $\tau = Lag Time (ns)$

MSM Analysis

- Biased for kinetic properties
 - Discretization error **↑**MFTP
 - − Markov error ♥MFPT

Non-Markovian Analysis

α = Last in A β = Last in B

Suarez et al., J. Chem. Theory Comput., 2014, 10 (7), pp 2658–2667 Vanden-Eijnden et al., J. Chem. Phys., 2009, 131(4), pp 44120

$$k_{ij}(\tau) = P\{X_{t+\tau} = j | X_t = i\}$$

 $k_{ij}^{\mu\nu}(\tau) = P\{X_{t+\tau} = j, L_{t+\tau} = \nu | X_t = i, L_{t+\tau} = \mu\} \quad \mu, \nu = \alpha, \beta$

Suarez et al., J. Chem. Theory Comput., 2014, 10 (7), pp 2658–2667 Vanden-Eijnden et al., J. Chem. Phys., 2009, 131(4), pp 44120

Unbiased kinetics

2N x 2N

Example with 3 bins. A is defined as bin 1 and B as bin 2

$$\mathcal{K}^T \mathbf{p}^{\mu} = \mathbf{p}^{\mu} \qquad p_i^{\text{eq}} = p_i^{\alpha} + p_i^{\beta}$$

Suárez et al., J. Chem. Theory Comput., 2014, 10 (7), pp 2658–2667

MSM vs Non-Markovian Analysis

MSM vs Non-Markovian Analysis

No lag-time

optimization 100 $\tau = 0.2$ ns y = xMFPT(µs) 10 Non-Markoviar Matrix 1 **MSM** 0.1 0.1 100 10 Direct MFPT(µs)

Non-Markovian Analysis

With sufficient history (color) information we get

- Unbiased thermodynamics (populations)
- Unbiased MFPT $(\tau \rightarrow 0)$

Suarez et al., J. Chem. Theory Comput., 2014, 10 (7), pp 2658–2667

Limited color/history info

Limited color/history info

Limited color/history info

Other non-Markovian Analyses

Markov + Color

When examining a given time point of the trajectory for estimating a labeled rate, the α or β label are assigned if possible given the amount of history. Otherwise the label is assigned stochastically assuming a Markov behavior.

Other non-Markovian Analyses

2nd Order Markov + Color

When examining a given time point of the trajectory for estimating a labeled rate, the α or β label are assigned if possible given the amount of history. Otherwise the label is assigned stochastically assuming a 2nd-Order Markov model.

Non-Markovian Analyses

Reduced data set:

Non-Markovian Analysis

Reducing the amount of Data (< 5%)

Non-Markovian Analyses

Reduced data, MSMBuilder States

Non-Markovian Analyses

Reduced data, MSMBuilder States

Markov vs Non-Markovian

In practice we have...

Defining the "backbone" of the path or *fundamental sequence* will allow us to divide the path ensemble in classes using an equivalence relation. Two paths that share the same fundamental sequence belong to the same class.

Def.

The fundamental sequence of a path is the most likely sequence that is consistent with the connectivity of the path. The likelihood is maximized in both directions.

$$\mathrm{FS}^* = \operatorname*{arg\,min}_{\mathbf{q}\in\Gamma(G)} \left\{ \sum_{i=1}^{|\mathbf{q}|-1} -\log(k_{q_i,q_{i+1}}k_{q_{i+1},q_i}) \right\}$$

Example: 2D toy model

Example: 2D toy model

Mechanism: MSM vs NM

Mechanism: MSM vs NM

MSM vs Lag-time

MSM vs Lag-time

Conclusions

- The inclusion of color information in the analysis allows us to obtain unbiased MFPTs even when the partition of the space in bins is not optimal.
- In a non-Markovian regime, even with a relatively small amount of history (available in most of the MD simulations), we can improve dramatically the estimation of the MFPTs with respect to regular Markov Models.
- We can drastically reduce the amount of data and still obtain reasonable results.
- If the history is taken in to account, there is no need of lagtime "optimization".
- The NM approach drastically outperforms MSM in the description of the mechanism/path ensemble.

Acknowledgment

- Joshua Adelman
- Daniel Zuckerman
- Justin Spiriti
- Rory Donovan
- Ramu Anandakrishnan
- Ariane Nunes
- Ian Welland

- Shaw group
- NIH
- NSF

Supporting Information

Non-Markovian Analyses(Folding)

Non-Markovian Analyses

Reduced data, RMSD-based States

Non-Markovian Analyses

MSM: Implied time scales

$$\mathcal{K}_{ml} = P\{X_{t+\tau} = \left\lceil \frac{l}{2} \right\rceil, L_{t+\tau} = \nu | X_t = \left\lceil \frac{m}{2} \right\rceil, \ L_t = \mu\}, \ \mu, \nu = \begin{cases} \alpha, \alpha & \text{if } m, l \text{ are odd} \\ \alpha, \beta & \text{if only } m \text{ is odd} \\ \beta, \alpha & \text{if only } m \text{ is even} \\ \beta, \beta & \text{if } m, l \text{ are even} \end{cases}$$

Suarez et al., J. Chem. Theory Comput., 2014, 10 (7), pp 2658–2667 Vanden-Eijnden et al., J. Chem. Phys., 2009, 131(4), pp 44120

Trp-cage Folding: Symmetric FS

Protein models

Table 1: Protein models used for Markovian and non-Markovian analyses. For each system, the table shows the number of residues, the total simulation time used in the analysis and the state definitions based on heavy-atom RMSD with respect to the folded structure whose protein data bank code (PDB ID) is given in the last column.

Protein	Num.	$\operatorname{Time}(\mu s)$	RMSD	RMSD	Reference Structure
	Residues		(Folded)	(Unfolded)	(PDB ID)
Chignolin	10	106	$< 1.10 \text{\AA}$	> 7.00Å	5AWL
Trp-cage	20	208	$< 1.75 \text{\AA}$	$> 10.0 \text{\AA}$	$2 \mathrm{JOF}$
NTL9	39	1100	$< 1.50 \text{\AA}$	$> 10.0 \text{\AA}$	2HBA
Villin	35	125	$< 1.50 \text{\AA}$	> 11.0Å	2F4K

Implied time scales

Markov State Models

Example: Methane/Methane

Dissociation process, 5 independent WE simulations.

J. Chem. Theory Comput., 2014, 10 (7), pp 2658–2667

Example: Ala4

5 independent WE simulations.

J. Chem. Theory Comput., 2014, 10 (7), pp 2658–2667

Ala4

First passage time distribution

Protein Science 2016, 25, pp 67-78